On F q 2 - maximal Curves of Genus 1 6 ( q − 3 ) q

نویسندگان

  • Miriam Abdón
  • Fernando Torres
چکیده

We show that an Fq2-maximal curve of genus 1 6 (q − 3)q > 0 is either a non-reflexive space curve of degree q+1 whose tangent surface is also non-reflexive, or it is uniquely determined, up to isomorphism, by a plane model of Artin-Schreier type whenever q ≥ 27. MSC 2000: 11G20 (primary), 14G05, 14G10 (secondary)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : a lg - g eo m / 9 61 00 23 v 1 3 1 O ct 1 99 6 ON MAXIMAL CURVES

We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field F q 2 whose number of F q 2-rational points reaches the Hasse-Weil upper bound. Under a hypothesis on non-gaps at a rational point, we prove that maximal curves are F q 2-isomorphic to y q + y = x m , for some m ∈ Z +. As a consequence we show that a maximal curve of genus g = (q − ...

متن کامل

On the Genus of a Maximal Curve

Previous results on genera g of Fq2 -maximal curves are improved: (1) Either g ≤ ⌊(q − q + 4)/6⌋ , or g = ⌊(q − 1)/4⌋ , or g = q(q − 1)/2 . (2) The hypothesis on the existence of a particular Weierstrass point in [2] is proved. (3) For q ≡ 1 (mod 3), q ≥ 13, no Fq2 -maximal curve of genus (q−1)(q−2)/3 exists. (4) For q ≡ 2 (mod 3), q ≥ 11, the non-singular Fq2 -model of the plane curve of equat...

متن کامل

ON A F q 2 - MAXIMAL CURVE OF GENUS q ( q − 3 ) / 6

We show that a F q 2-maximal curve of genus q(q − 3)/6 in characteristic three is unique up to F q 2-isomorphism unless an unexpected situation occurs.

متن کامل

On Curves Covered by the Hermitian Curve

For each proper divisor d of (q − √q + 1), q being a square power of a prime, maximal curves Fq-covered by the Hermitian curve of genus 1 2 ( q− √ q+1 d − 1) are constructed.

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005